

FIGURE 31 BRONZE SERIES

APPLICATION DATA

- Steam Boilers
- Pressure Reducing Stations
- Unfired Steam Pressure Vessels & Lines
- Accumulators, Sterilizers, Steam Cleaners
- Air compressors, Cookers, Receivers
- Pneumatic Systems
- OEM Equipment

VALVE RATINGS See Capacity Charts beginning on page 208

Model	Pressure PSIG (bar)	Temperature °F (°C)
0031/0041/041A/41AT/41AA	5 to 250 (.3 to 17.2)	-20 to 406 (-29 to 208)
0032/0042/042A/42AT/42AA	5 to 300 (.3 to 20.7)	-20 to 422 (-29 to 216)
0033/0043/043A/43AT	5 to 250 (.3 to 17.2)	-20 to 406 (-29 to 208)

APPLICABLE CODES

- ASME Section I "V" for Steam
- ASME Section VIII "UV" for Steam/Air/Gas
- API 527
- Canadian Registration # 0G0591.9C
- PED (Consult Factory)

FIGURE 31 / 41 BRONZE SERIES

SIZES 1/2" – 21/2" PRESSURES to 300 PSIG at 422°F

- Meets ASME Section I & VIII Code for Steam, Air & Non-hazardous Gas Service
- "V" or "UV" National Board Certified
- Dual Ring Control See page 206
- Rugged Cast Unitized Bonnet
- SS Spring Supplied as Standard
- Full Nozzle
- Soft Seat Design Available See page 206
- Open Lever Assembly

OPTIONS

- Top Outlet Discharge
- BSP Connections
- Soft Seated Valves
- Plain Cap (on selected models)
- Test Reports Available

MODELS

6	 0031 - ASME Section I Steam, Bronze Trim
8)	 0041 - ASME Section VIII Steam, Bronze Trim
2	041A - ASME Section VIII Air, Bronze Trim
6)	41AT - Top Outlet on 041A
ź	41AA - Plain Cap on 041A (D orifice only)
0	0032 - SS Base & Disc on 0031
0)	0042 - SS Base & Disc on 0041
	042A - SS Base & Disc on 041A
	42AT - SS Base & Disc on 41AT
	• 42AA - SS Base & Disc on 41AA (D orifice only
	• 0033 - EPDM Soft Seat on 0031

- 0043 EPDM Soft Seat on 0041
- 043A Viton Soft Seat on 041A
- 43AT Viton Soft Seat on 41AT

	_	Mo	del	_	Orifice	Inlet Size	Connec- tions	- S	et Pressu	ure	
	0	0	4	1	D	С	Α	- 0	4	0	
	1	2	3	4	5	6	7	8	9	10	
Model - Position 1, 2, 0031 = ASME Sectio 0041 = ASME Sectio 041A = ASME Sectio 41AT = Top Outlet of 41AA = Plain Cap on 0032 = SS Base & D 0042 = SS Base & D 042A = SS Base & D 42AT = SS Base & D 42AT = SS Base & D 0033 = EPDM Soft S 0043 = EPDM Soft S 043A = Viton Soft Se 43AT = Viton Soft Se	3 & 4 on I St on VIII on VIII on 041 041 0isc or 0isc or 0isc	eam, E Steam Air, Bro (D oriti 00031 0041 0041A 041A 141AA 141AA 0031 0041 041A 41AT	Bronze , Bron onze T fice or	Trim ze Trim rim nly)	O	Drifice D E F G H J D E E F G H J J	- Positic 2 e - Pos 2 3 4 1 1 4 1 2 2 2 2	on 5 sition 6	Γ C Sε TSI (us 43/	$prescript{c} prescript{c} pre$	tions - Position 7 /PT x FPT /PT x Top /BSP x FBSP Other sure - Position 8, 9 & 10 = Actual Setting Loosely Assembled [†] Certified Assemblers Only , 0032, 0033, 41AT, 42AT, A or 42AA only)

CODE SELECTION CHART

FIGURE 31 / 41 BRONZE SERIES

SPECIFICATION

The valve shall meet the ASME Section I or VIII Code for steam, air and gas services. It shall be "V" or "UV" National Board Certified. The valve shall have dual blowdown ring to allow better adjustment of the pop and blowdown. The valve shall consist of a unitized bonnet design guaranteeing proper guiding and making the valve extremely dependable in terms of pop action, seat tightness and repeatability. The valve shall be top guided and shall have a full nozzle for optimum flow performance. The valve shall have a stainless steel spring for better corrosion and yield strength. The valve shall meet the API 527 leakage standard requiring bubble tight shutoff up to 90% of set pressure.

DIMENSIONS* inches (mm) **AND WEIGHTS** pounds (kg)

Model	Inlet	Orifice	Outlet ⁽²⁾	A1	A3	B1	B2	B3	C1	C2	D (1)	E	Weight
****DCA	½ MPT	D	³ ⁄ ₄ FPT	6%	6¼	1¾	11/16	1%	2¼	21/8	1¾	11%	2
	(15)		(20)	(166.7)	(158.8)	(34.9)	(27.0)	(47.6)	(57.2)	(73.0)	(34.9)	(28.6)	(0.91)
****DDA	34 MPT	D	¾ FPT	6%	6¼	1%	—	1%	2¼	—	1%	1¼	2¼
	(20)		(20)	(166.7)	(158.8)	(34.9)		(47.6)	(57.2)		(34.9)	(31.8)	(1.02)
****EDA	34 MPT	E	1 FPT	7⅓	_	1%	1¼	_	2 5∕16	31⁄8	1%	1¼	2½
	(20)		(25)	(181.0)		(41.3)	(31.8)		(58.7)	(79.4)	(34.9)	(31.8)	(1.13)
****EEA	1 MPT	E	1 FPT	7⅓	_	1%	_	_	2 ⁵ ⁄₁₀	_	1¾	1½	2 ¾
	(25)		(25)	(181.0)		(41.3)			(58.7)		(34.9)	(38.1)	(1.25)
****FEA	1 MPT	F	1¼ FPT	9	_	1%	11/16	—	2 ¹³ /16	3½	1 ¹ %	1½	4
	(25)		(32)	(228.6)		(47.6)	(36.5)		(71.4)	(88.9)	(42.9)	(38.1)	(1.81)
****FFA	1¼ MPT	F	1¼ FPT	9	_	1%	—	—	2 ¹³ /16	—	1 ¹ %	1¾	4 ¼
	(32)		(32)	(228.6)		(47.6)			(71.4)		(42.9)	(44.5)	(1.93)
****GFA	1¼ MPT	G	1½ FPT	9 ¹¹ / ₁₆	_	21⁄8	1 ¹¹ / ₁₆	_	3	3¾	1 ¹¹ / ₁₆	1%	7
	(32)		(40)	(246.1)		(54.0)	(42.9)		(76.2)		(42.9)	(47.6)	(3.18)
****GGA	1½ MPT	G	1½ FPT	9 ¹¹ / ₁₆	—	21⁄8	—	—	3	—	1 ¹ %	21/16	7¼
	(40)		(40)	(246.1)		(54.0)			(76.2)		(42.9)	(52.4)	(3.29)
****HGA	1½ MPT	Н	2 FPT	121⁄8	_	2%	2 ¹ /16	_	3½	4 ¹¹ / ₁₆	23⁄4	2¼	13½
	(40)		(50)	(308.0)		(65.1)	(52.4)		(88.9)	(119.1)	(69.9)	(57.2)	(6.12)
****HHA	2 MPT	Н	2 FPT	121⁄8	_	2 %	_	_	3½	_	2¾	2%	13¾
	(50)		(50)	(308.0)		(65.1)			(88.9)		(69.9)	(65.1)	(6.24)
****JHA	2 MPT	J	2½ FPT	135/16	—	31⁄8	2½	—	3¾	5	2¾	2 ³ / ₄	17½
	(50)		(65)	(338.1)		(79.4)	(63.5)		(95.3)	(127.0)	(69.9)	(69.9)	(7.94)
****JJA	2½ MPT	J	2½ FPT	135/16	_	31⁄8	_	_	3¾	_	2¾	3	17¾
	(65)		(65)	(338.1)		(79.4)			(95.3)		(69.9)	(76.2)	(8.05)

*Accurate to ±1/8".

**** Use appropriate Model Number.

⁽¹⁾ Add 50% to D Dimension when lever is pulled out to manually operate valve. ⁽²⁾ Outlet connections do not apply for **AT top outlet valve.

FIGURE 31 / 41 BRONZE SERIES SOFT SEATS

Safety Valves with metal seats will start to leak at 90% of set pressure. A Spence Safety Valve equipped with a soft seat seals on both the metal and soft seats (see illustration). As a result, it will not begin to leak until system pressure reaches 95% of set pressure, minimizing system energy loss.

FPDM Soft Seat

The o-rings in standard soft seat safety valves tend to blow out during discharge. Spence Soft Seat Safety Valves utilize a flat soft seat insert in the disc assembly of the valve that stays in place during operation, thus providing hassle-free operation.

There are many troublesome applications where using a Spence Soft Seat Safety Valve can reduce costly downtime and repair costs. Consider a Spence Soft Seat Safety Valve for:

- Operating very close to set pressure
- Heavy vibration
- Hard-to-hold fluids
- Occasional foreign particles
- Icing problems
- Pipe strain due to excessive discharge

Viton Soft Seat

SERVICE RECOMMENDATIONS*

		•		
WET20 to 422	2°F (-29 to 216°C)	-20 to	400°F (-29 to 204	°C)
DRY20 to 250	0°F (-29 to 121°C)	AIR	Dowtherm A	lodine
Acetone Acetylene Gas Beer Bleach Liquor Brake Fluid Calcium Chloride Carbon Monoxide Carbonic Acid Citric Acid Denatured Alcohol Ethylene Diamine	Freon 22 Hydrazine Lindol Hydraulic Fluid Lye Methanol Methyl Alcohol Methyl Butyl Ketone Nitrogen STEAM Sulfur Hexafluoride WATER	Benzoic Acid Benzul Alcohol Butane Butyl Alcohol Carbon Disulfide Carbon Tetrachloride Castor Oil Chlorine Chromic Acid Corn Oil Crude Oil Diesel Oil	Ethane Ethyl Alcohol Ethyl Chloride Ethylene Ethylene Glycol Fuel Oil Gasoline Glucose Glycerin Helium Hydraulic Oil Hydrogen Gas	Kerosene Linseed Oil Methane Mineral Oils Natural Gas Petroleum Oil Propane Propyl Alcohol Propylene Sulfur Dioxide Turpentine

*These recommendations should be used as a guide only. It is the sole responsibility of the user to select suitable materials.

FIGURE 31 BRONZE SERIES DUAL RING CONTROL

Safety Valves are pressure relief devices actuated by inlet static pressure and characterized by rapid opening or "pop" action. The difference between Safety Valves from different manufacturers is how well they do this. Spence Figure 31 Safety Valves have Dual Ring Control which allows for finer adjustment of the "popping" action and length of "blowdown". This allows exceptional flow efficiency and maximum lifting force while minimizing system energy loss.

System pressure is pushing upward against the disk which is held closed by the downward force of the spring against the spindle.

OPENING

When system pressure rises above the set pressure of the spring, the disc begins to lift. This simmer/warn stage allows system pressure to enter the "huddling chamber" where it acts on a larger, secondary area of the disc. This magnified force causes the valve to "pop" open.

As pressure increases, the disc continues to lift until fully open. When pressure is reduced to a level below the set point of the valve, the spring force against the spindle will snap shut the disc.

FIGURE 31 / 41 **BRONZE SERIES**

MATERIALS OF CONSTRUCTION

Ref	Part Name	Material
1A	Base/Nozzle - Bronze	Brass or Brz ASTM B283 or
		ASME SB62
1B	Base/Nozzle - SST	316 SST ASTM A276
2	Base Ring	Brass or Brz ASTM B283 or
		ASTM B62
3	Nozzle Ring Set Screw	Brass ASTM B16
4A	Disc - Bronze Metal	Brass or Brz ASTM B16 or ASTM B62
4B	Disc - SST Metal	316 SST ASTM A276
4C	Disc Assembly - Soft	Brass or Brz - EPDM/Viton
5	Guide Ring	Brass or Brz B283 or B584
6	Guide Ring Set Screw	Brass ASTM B16
7	Spindle	Steel ASTM A108
8	Spring	302 SST/17-7 SST
9	Spring Washer	Steel ASTM A108
10	Bonnet†	Cast Brz ASME SB62
11	Adjusting Bolt	Brass ASTM B16
12	Adjusting Bolt Locknut	Steel (Plated) SAE J995 GRD 2
13	Lifting Cap	Zinc Alloy
14	Lifting Cap Pin	Steel
15	Lifting Cap Lockscrew	Plated Steel
16	Spindle Nut	Steel ASTM
17	Spindle Nut Locknut	Plated Steel
18	Seal and Wire	Lead and SST
19	Nameplate	SST
20	Drive Screw	SST
21	Lever	Steel (Plated)

	H	H
Ref	Part Name	Material
1A	Base/Nozzle - Bronze	Brass ASTM B283
1B	Base/Nozzle - SST	316 SST ASTM A276
2	Base Ring	Brass ASTM B283
3	Nozzle Ring Set Screw	Brass ASTM B16
4A	Disc - Bronze Metal	Brass ASTM B16
4B	Disc - SST Metal	316 SST ASTM A276
5	Guide Ring	Brass B283
6	Guide Ring Set Screw	Brass ASTM B16
7	Spindle	Steel ASTM A108
8	Spring	302 SST/17-7 SST
9	Spring Washer	Steel ASTM A108
10	Bonnet	Cast Brz ASME SB62
11	Adjusting Bolt	Brass ASTM B16
12	Adjusting Bolt Locknut	Steel (Plated) SAE J995 GRD 2
13	Сар	Brass ASTM B16
18	Seal and Wire	Lead and SST
19	Nameplate	SST
20	Drive Screw	SST

FIGURE 31 / 41 BRONZE SERIES

41AA, 42AA

