Applications - Pressure Regulation for Steam Distribution - Single Point or Multiple Use Applications - Pressure Control for Steam Plants - District Heating Systems - Single Stage Reduction Stations - Two Stage Reduction Stations - Parallel Reduction Stations # Iron Horse ED Series Pressure Regulator Pressures To 600 PSIG Temperatures to 750°F ### **Three Pilot Mounting Options** include standard side mount (shown), integral mount and remote mount #### SECO Metal Seats and Discs resist wiredraw - not one case of SECO Metal being cut by steam in 75 years #### **Packless Construction** eliminates leakage and greatly reduces friction and stem wear #### Two Main Spring Options for superior regulation over a wide range of applications #### Large, Protected Metal Diaphragm bathed in condensate, sealed away from steam seldom needs replacement #### No Closely Fitted Parts to stick or bind due to uneven expansion or foreign matter #### **Few Moving Parts** mean long service life Patented SECOWELD Option allows easy repair of seat ring threads damaged by high pressure applications **Dead End Shutoff** meets Class IV in steam service, even on large sizes #### THE OPERATING CYCLE OF A SPENCE PRESSURE REGULATOR The basic Type ED has been selected to illustrate the operation of a SPENCE Pilot Operated Pressure Regulator. This presentation describes the successive steps in the mechanical cycle of the Regulator. #### THE OPERATING CYCLE OF A SPENCE TEMPERATURE REGULATOR The Type ET134 has been selected to illustrate the operation of a SPENCE Pilot Operated Temperature Regulator. This presentation describes the successive steps in the mechanical cycle of the Regulator. 6 HEATER, Delivery Pipe and Control Line are now being filled with steam flowing through Main Valve. As delivery pressure (yellow) rises, it overcomes the force exerted by Pressure Spring and Pilot throttles. This, in turn allows Main Valve to throttle just enough to maintain the set delivery pressure. 7THERMOSTAT ELEMENT (vapor tension type) is connected into heater outlet. The rising temperature of the fluid (blue) being heated creates a vapor pressure (green) on the Temperature Diaphragm. When this pressure has reached a point sufficient to overcome the Temperature Adjusting Spring, it applies a force on the Lever so as gradually to decrease the spring loading on the Pressure Diaphragm. This produces a stem-by-step reduction in the delivery pressure as the temperature rises through several degrees. If the desired temperature is exceeded, the vapor pressure on the Pilot Temperature Diaphragm overcomes the forces of the Spring. This allows Pilot and Main Valve to close tight. # TYPE ED SERIES PRESSURE REGULATOR CAST IRON or STEEL PRESSURES to 600 PSIG at 750°F #### APPLICATION DATA - Pressure Regulating for Steam Distribution - Single Point or Multiple use Applications - Pressure Control for Steam Plants - District Heating Systems - Single Stage Reductions - Two Stage Reductions - Parallel Reduction #### TYPE ED PRESSURE REGULATOR VALVE INFO PAGE 28 PILOT INFO Valve is tapped so that Pilot may be mounted on either side. #### DIMENSIONS inches (mm) | SIZE | F | G | |-------|-------------------|-------| | 3/8 | 53/8 | 11/4 | | (10) | (136) | (32) | | 1/2 | 53/8 | 11/4 | | (15) | (136) | (32) | | 3/4 | 5³/s | 13/8 | | (20) | (136) | (35) | | 1 | 53/4 | 11/2 | | (25) | (146) | (38) | | 11/4 | 6 | 17/8 | | (32) | (152 | (48) | | 11/2 | 61/4 | 2 | | (40) | (159) | (51) | | 2 | 6 ⁵ /s | 21/8 | | (60) | (168) | (54) | | 21/2 | 63/4 | 23/8 | | (65) | (171) | (60) | | 3 | 71/4 | 23/4 | | (80) | (184) | (70) | | 4 | 8 | 31/2 | | (100) | (203) | (89) | | 5 | 9 | 31/2 | | (125) | (229) | (89) | | 6 | 97/8 | 4 | | (150) | (251) | (102) | | 8 | 101/2 | 61/4 | | (200) | (267) | (159) | | 10 | 121/2 | 6 | | (250) | (318) | (152) | | 12 | 14 | 81/2 | | (300) | (356) | (216) | # TYPE ET14D PRESSURE LIMITING # PRESSURE LIMITING TEMPERATURE REGULATOR CAST IRON or STEEL CONTROLS 20 to 500°F #### APPLICATION DATA - Temperature & Pressure Regulation for large volume Heat Exchangers - Storage Heaters - Jacketed Kettles - Vats # TYPE ET14D TEMPERATURE & PRESSURE REGULATOR VALVE INFO PAGE 28 D PILOT INFO PAGE 48 T14 PILOT INFO PAGE 76 #### DIMENSIONS inches (mm) | SIZE | F | G | |-------|-------------------|-------| | 3/8 | 5¾a | 11/4 | | (10) | (136) | (32) | | 1/2 | 5³/a | 11/4 | | (15) | (136) | (32) | | 3/4 | 5 ⁵ /e | 1³/s | | (20) | (143) | (35) | | 1 | 53/4 | 11/2 | | (25) | (146) | (38) | | 11/4 | 6 | 17/s | | (32) | (152) | (48) | | 11/2 | 61/4 | 2 | | (40) | (159) | (51) | | 2 | 65/a | 21/8 | | (50) | (168) | (54) | | 21/2 | 63/4 | 2³/e | | (65) | (171) | (60) | | 3 | 71/4 | 23/4 | | (80) | (184) | (70) | | 4 | 8 | 31/2 | | (100) | (203) | (89) | | 5 | 9 | 31/2 | | (125) | (229) | (89) | | 6 | 97/8 | 4 | | (150) | (251) | (102) | | 8 | 101/2 | 61/4 | | (200) | (267) | (159) | | 10 | 121/2 | 6 | | (250) | (318) | (152) | | 12 | 14 | 81/2 | | (300) | (356) | (216) | Valve is tapped so that Pilot may be mounted on either side. # TYPE ET14 TEMPERATURE REGULATOR CAST IRON or STEEL CONTROLS 20 to 500°F #### APPLICATION DATA - Temperature Regulation for Batch Process - Storage Heaters (Water, Fuel Oil or Chemical) - Air Heating #### TYPE ET14 TEMPERATURE REGULATOR Valve is tapped so that Pilot may be mounted on either side. ### DIMENSIONS inches (mm) | SIZE | F | G | |-------|-------------------|-------| | 3/8 | 53/8 | 11/4 | | (10) | (136) | (32) | | 1/2 | 5³/s | 11/4 | | (15) | (136) | (32) | | 3/4 | 5 ⁵ /8 | 1¾s | | (20) | (143) | (35) | | 1 | 53/4 | 11/2 | | (25) | (146) | (38) | | 11/4 | 6 | 17/s | | (32) | (152) | (48) | | 11/2 | 61/4 | 2 | | (40) | (159) | (51) | | 2 | 6 ⁵ /s | 21/e | | (50) | (168) | (54) | | 21/2 | 63/4 | 2∛e | | (65) | (171) | (60) | | 3 | 71/4 | 2¾4 | | (80) | (184) | (70) | | 4 | 8 | 31/2 | | (100) | (203) | (89) | | 5 | 9 | 31/2 | | (125) | (229) | (89) | | 6 | 97/8 | 4 | | (150) | (251) | (102) | | 8 | 101/2 | 61/4 | | (200) | (267) | (159) | | 10 | 121/2 | 6 | | (250) | (318) | (152) | | 12 | 14 | 81/2 | | (300) | (356) | (216) | # PLANNING MAIN VALVE INSTALLATION #### A. PLANNING THE INSTALLATION - 1. Locate the valve in a straight run of horizontal pipe. See Fig. 1. - Allow headroom above the valve for access through the blind flange. Provide clearance for stem withdrawal underneath. - Prevent water hammer and erratic operation by installing traps to provide proper drainage before and after the valve, and before secondary PRV or control valve. - Avoid damaging affects of scale and dirt in pipe lines by using a strainer as shown in Fig. 1. - Provide a 3-valve by-pass to facilitate inspection without interrupting service. - 6. To eliminate excessive noise and erratic regulation with steam and other compressible fluids enlarge the delivery pipe size to effect a reasonable flow velocity at the reduced pressure. A tapered transition is recommended. If possible, avoid a sharp turn close to the regulator outlet and a bullheaded tee connection to the low pressure main. - Install initial and delivery pressure gauges to indicate performance. If the pressure rating of the delivery system or connected equipment is less than the initial steam pressure, provide a safety valve. #### B. CONTROL PIPE - Use 1/4" pipe for this line which connects the pilot diaphragm chamber to the desired point of pressure control. See Fig. 1. - Take the control at a point of minimum turbulence. Avoid control immediately at the valve outlet or after a turn. When the delivery pipe expands in size select a spot at least 4 pipe diameters beyond the point of enlargement. - Pitch away from pilot to avoid erratic operation and fouling. Eliminate water pockets. - Locate delivery pressure gauge in control pipe to show pressure actually reaching pilot diaphragm. #### C. DESIGN GUIDELINES TO MINIMIZE NOISE - Size the regulator to provide a maximum inlet velocity of about 10,000 FPM. - Determine the regulator outlet velocity, if it would exceed 30,000 FPM, use a Spence muffling orifice or a second stage regulator. - 3 Expand regulator outlet piping to limit discharge line velocity to about 10.000 FPM. - Avoid abrupt changes in pipe size. Limit pipe diameter changes to two pipe sizes per stage of expansion. Do not use eccentric reducers. - Directional changes in downstream piping should be made only after the line size has been increased. Use long radius fittings; avoid bull-head tee connection. - Provide as much straight run of pipe on both sides of regulator as possible: - a 10 pipe diameters minimum to the inlet. - b 20 pipe diameters minimum of expanded line size from the outlet. - Size all piping components, including strainer and stop valves for a maximum flow velocity of about 10,000 FPM (Exception: An outlet stop valve mounted at the regulator outlet should be equal in size to the regulator). In areas where low sound levels are specified, reduce this limit by 25% to 50%. - To limit noise transmission through the building's structure. keep the regulator and piping at least 3 feet away from solid surfaces. Use sound-isolating piping supports. - Apply high density insulation to the regulator body, piping and system components, Insulation reduces heat loss significantly and can provide moderate (3-6 dB) local noise attenuation. - Use a Spence noise suppressor to reduce the propagation of noise via the downstream piping. ## VALVE SIZING BY COMPUTATION #### **FORMULA KEY** A = Area of Pipe in (inches)2 C_V = Valve Coefficient EDR = Equivalent Direct Radiation (Sq. Ft.) F = Pipe Area Factor (see Pipe Factors Table) ft = Feet G = Specific Gravity ΔP = Pressure Drop,P1 - P2 psi P₁ = Inlet Pressure, psia (psi + 14.7) P₂ = Reduced Pressure, psia (psi + 14.7) P_C = Pressure at Thermodynamic Critical Point, psia (water = 3206 psia) P_v = Vapor Pressure, psia $\Delta Ps = P_1 - P_v \text{ when } P_2 > P_v$ $\Delta Ps = P_1 - (.96 - .28 \sqrt{\frac{P_v}{Pc}}) P_v \text{ when } P_2 \leq P_v$ q = Liquid Flow Rate, U.S. gpm Q = Flow Rate, SCFH $T = Absolute T (T + 460)^{\circ}R$ Тsн = Steam Superheat (°F) = Total Steam Temp. - Saturated Steam Temp. V = Specific Volume Fτ3/# V = Velocity, FPM W = Steam Flow, #/Hr. Ws = Flow, #/Hr. Superheated Steam To avoid interpolation or solve problems beyond the scope of the table, valve sizes may be determined by calculation as follows: #### SUBCRITICAL P2 > .58 P1 P₂ ≤ .58 P₁ CRITICAL **SUPERHEATED** SATURATED STEAM: TED P₂ > .55 P₁ P₂ \leq .55 P₁ $C_V = \frac{W (1 + .0007TSH)}{2.1 \sqrt{\Delta P (P_1 + P_2)}} C_V = \frac{W (1 + .0007TSH)}{1.75 P_1}$ STEAM: GAS: $\begin{array}{ccc} & P_2 > .5 \ P_1 & P_2 \leq .5 \ P_1 \\ C_{V^{=}} & \frac{Q}{963} \ \sqrt{\frac{GT}{\Delta P \ (P_1 + P_2)}} & C_{V^{=}} & \frac{Q \ \sqrt{GT}}{834 \ P_1} \end{array}$ LIQUID: $P_2 > P_1 - .85 \Delta P_S$ P2 ≤ P1 - .85 ΔPS $C_{V} = q \sqrt{\frac{G}{\Delta P}}$ $C_{V} = .93q \sqrt{\frac{G}{\Delta Ps}}$ ### **FLOW** **STEAM** AIR & GASES Q = $\frac{.0259 \times V \times F \times P_1}{T}$ LIQUIDS $q = .0054 \times V \times F$ #### LOADS WATER W = $\frac{GPM}{2}$ X Temp. Rise (°F) FUEL OIL $W = \frac{GPM}{4} \times Temp. Rise (°F)$ $W = \frac{CFM}{900}$ X Temp. Rise (°F) RADIATION ABSORPTION W = 16-20 #/Hr./Ton-Hr. STM. ATOM W = 0.1 #/Hr./#Oil #### VELOCITY STEAM $V = 2.4 \frac{WV}{\Delta}$ ### PIPE FACTORS FOR STANDARD (SCHEDULE 40) PIPE | A-0.0000 | | CHADINA | | |----------|--------|---------|--------| | SIZE | FACTOR | SIZE | FACTOR | | 1/8 | .55 | 31/2 | 95 | | 1/4 | 1.0 | 4 | 122 | | 3/8 | 1.8 | 5 | 192 | | 1/2 | 2.9 | 6 | 278 | | 3/4 | 5.1 | 8 | 481 | | 1 | 8.3 | 10 | 758 | | 11/4 | 14 | 12 | 1076 | | 11/2 | 20 | 14 | 1301 | | 2 | 32 | 16 | 1699 | | 21/2 | 46 | 18 | 2151 | | 3 | 71 | 20 | 2673 | ## PRESSURE REDUCING STATION DESIGN GUIDELINES #### I. SINGLE STAGE PRESSURE REGULATOR - 1. When to use single stage regulator: - A. When load turndown requirement is generally no greater than 10:1. - B. When ratio of specific volume of steam, outlet to inlet, is no greater than 3 to 1. - When only one reduced steam pressure level is required. #### II. PARALLEL PRESSURE REGULATORS - 1. When to use parallel pressure regulator stations: - A. When maximum specified capacity requires selection of a pressure regulator greater than 12 inch pipe size. (It may be more economical to install two smaller valves than one very large one.) - When normal conditions require operation at 10% or less of specified maximum capacity for sustained periods. - C. When there are two distinct load requirements; i.e., summer/winter operation. - When to use a pneumatically operated parallel pressure regulator station: - A. When the combined accuracy of regulation of mechanically operated controls is unacceptable. For Spence mechanically operated regulators normal sizing/selection results in accuracy of regulation of approximately 5% of set pressure. Combined accuracy of regulation of mechanically operated parallel installed regulators is approximately 10% of set pressure. Pneumatically operated regulators equipped with reset maintain set point within 1% for all sustained flows. #### III. Two Stage Pressure Regulators[†] - 1. When to use two stage pressure regulator stations: - † Primary PRV requires optional base bypass and 1/8" bleedport. - A. When intermediate steam pressure is required. - B. When concerned with PRV generated noise, use two stage station when specific volume ratio, outlet to inlet, is greater than 3 to 1, unless manufacturer offers assurance or other means of meeting noise specification. - C. When complying with Power Piping Code ANSI B31.1-1986, which reads, in part, "in district heating and steam distribution systems where the steam pressure does not exceed 400 psi (2758 kPa) and where the use of relief valves and vent piping are not feasible, two or more pressure reducing valves may be installed in series, each set at or below the safe working pressure of equipment served and no relief valve is required." # IV. Two Stage Parallel Pressure Regulators[†] Whenever any condition from II and any condition from III applies. #### SPACE CONSIDERATIONS FOR REDUCING STATIONS - Following are rules of thumb for approximating space requirements for installing reducing stations: - A. Single stage (with or without noise suppressors) Inlet side: ten (10) diameters of PRV pipe size Outlet side: twenty (20) diameters of final pipe size, where final pipe size is determined on the basis of 10,000 fpm line velocity. B. Two stage Inlet side of primary: ten (10) diameters of PRV pipe size. Intermediate: twenty (20) diameters of secondary PRV pipe size. - Outlet side: twenty (20) diameters of final pipe size, where final pipe size is determined on the basis of 10,000 fpm line velocity. - C. Two stage with muffling orifice; same as A above. ## PRESSURE REDUCING STATION GENERAL SPECIFICATION A. Pressure Reducing Station shall consist of: - pressure regulator - inlet strainer - inlet and outlet stop valves (gate type) - by-pass valve (globe type) - trap at inlet to pressure regulator - pressure gauges on inlet and outlet of station - pressure relief valve downstream of regulator - B. Stop valves and strainer shall be at least pressure regulator size - C.Expand pressure regulator outlet pipe size to obtain discharge line velocity which will not exceed: Up to and including 2" 15,000 FPM 2 1/2" up to 8" 10,000 FPM Above 8" 8,000 FPM Regulator outlet velocity shall be limited to: Up to and including 2" 45,000 FPM 2 1/ 2" up to 8" 30,000 FPM Above 8" 24,000 FPM - D. Unions shall be used on either side of screwed end bypass valve and pressure regulator to facilitate removal. - E. Pressure regulators 2-1/2" and larger shall have flanged ends and be suitable for pressure and temperature specified. - F. Limit pressure regulator inlet velocity to: Up to and including 2" 15,000 FPM 2 1/2" thru 8" 10,000 FPM Above 8" 8,000 FPM - G.Regulator sound pressure level while operating at specified maximum capacity shall not exceed 90 dbA as measured at a point three feet downstream and three feet from uninsulated pipe surface. - H.Pressure regulator capacity shall not be greater than 120 of specified maximum capacity. - For details of safety valve sizing and installation, please refer to the latest National Board Inspection Code and ANSI B31.1 Code. # RATED STEAM CAPACITY TABLE # TYPE E MAIN VALVE—FULL PORT ## **Pounds of Saturated Steam per Hour** VALVE INFO PAGE 28 | PRESS | URE-psig | | | | | | N. | VALVE S | IZE (inch | nes) | | | | | | | |-------|--------------|------------|-------------------|--------------|----------------|--------------|--------------|----------------|-----------------------------------------|----------------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|------------------| | INLET | REDUCED | 3/8 | 1/2 | 3/4 | 1 | 11/4 | 11/2 | 2 | 21/2 | 3 | 4 | 5 | 6 | 8 | 10 | 12 | | 20 | 5-0 | 90 | 165 | 370 | 520 | 835 | 1175 | 1840 | 2610 | 4390 | 6470 | 10030 | 14715 | 26345 | 41890 | 66040 | | 25 | 10 | 100 | 185 | 350 | 575 | 920 | 1290 | 2025 | 2870 | 4830 | 7115 | 11030 | 16185 | 28980 | 46080 | 72648 | | | 5-0 | 100 | 190 | 365 | 595 | 955 | 1345 | 2105 | 2985 | 5025 | 7400 | 11475 | 16835 | 30140 | 47930 | 75560 | | 30 | 15 | 105 | 195 | 380 | 615 | 990 | 1390 | 2175 | 3085 | 5190 | 7645 | 11855 | 17400 | 31150 | 49530 | 78080 | | | 10-0 | 115 | 215 | 415 | 675 | 1080 | 1515 | 2370 | 3365 | 5655 | 8330 | 12920 | 18955 | 33940 | 53965 | 85075 | | 40 | 25 | 120 | 220 | 425 | 695 | 1115 | 1565 | 2450 | 3475 | 5850 | 8615 | 13355 | 19600 | 35085 | 55790 | 87950 | | | 20 | 135 | 250 | 480 | 780 | 1250 | 1760 | 2755 | 3905 | 6570 | 9680 | 15005 | 22020 | 39425 | 62690 | 98830 | | | 15-0 | 140 | 260 | 505 | 825 | 1320 | 1850 | 2900 | 4115 | 6920 | 10195 | 15805 | 23195 | 41530 | 66035 | 10410 | | 50 | 35 | 130 | 245 | 470 | 765 | 1225 | 1720 | 2695 | 3830 | 6435 | 9480 | 14700 | 21575 | 38625 | 61415 | 96820 | | | 30 | 150 | 275 | 530 | 865 | 1385 | 1945 | 3045 | 4320 | 7270 | 10705 | 16600 | 24360 | 43615 | 69350 | 10933 | | | 25 | 160 | 300 | 580 | 945 | 1515 | 2125 | 3325 | 4720 | 7940 | 11695 | 18130 | 26605 | 47635 | 75745 | 119410 | | | 20-0 | 165 | 310 | 600 | 975 | 1560 | 2190 | 3430 | 4870 | 8185 | 12060 | 18700 | 27440 | 49125 | 78110 | 123140 | | 60 | 45 | 140 | 265 | 510 | 830 | 1330 | 1865 | 2925 | 4150 | 6975 | 10280 | 15935 | 23385 | 41865 | 66570 | 10494 | | | 40 | 160 | 300 | 575 | 940 | 1505 | 2115 | 3310 | 4700 | 7905 | 11645 | 18055 | 26495 | 47435 | 75425 | 11890 | | | 35 | 175 | 330 | 630 | 1030 | 1650 | 2320 | 3630 | 5155 | 8665 | 12765 | 19790 | 29045 | 51995 | 82680 | 13034 | | | 30-0 | 190 | 350 | 680 | 1105 | 1770 | 2490 | 3895 | 5530 | 9300 | 13700 | 21240 | 31170 | 55805 | 88735 | 13988 | | 75 | 55 | 180 | 330 | 640 | 1045 | 1670 | 2350 | 3675 | 5215 | 8775 | 12925 | 20040 | 29405 | 52645 | 83710 | 13197 | | | 50 | 195 | 365 | 705 | 1150 | 1840 | 2585 | 4045 | 5740 | 9655 | 14220 | 22050 | 32355 | 57930 | 92110 | 14521 | | | 45 | 210 | 395 | 760 | 1235 | 1980 | 2785 | 4360 | 6185 | 10405 | 15325 | 23760 | 34865 | 62420 | 99255 | 15647 | | | 40-0 | 225 | 420 | 805 | 1315 | 2105 | 2955 | 4630 | 6570 | 11050 | 16275 | 25230 | 37025 | 66285 | 105400 | 166160 | | 100 | 75 | 225 | 420 | 810 | 1320 | 2115 | 2970 | 4655 | 6605 | 11110 | 16365 | 25370 | 37230 | 66650 | 105985 | 16708 | | | 60 | 275 | 510 | 985 | 1610 | 2575 | 3620 | 5665 | 8045 | 13525 | 19925 | 30890 | 45330 | 81155 | 129045 | 203440 | | | 50-0 | 295 | 550 | 1060 | 1725 | 2765 | 3885 | 6080 | 8630 | 14515 | 21380 | 33145 | 48640 | 87085 | 138475 | 21830 | | 125 | 100 | 250 | 470 | 905 | 1475 | 2360 | 3315 | 5190 | 7370 | 12395 | 18255 | 28305 | 41535 | 74360 | 118235 | 186400 | | | 75 | 335 | 630 | 1215 | 1980 | 3170 | 4455 | 6970 | 9895 | 16645 | 24515 | 38010 | 55775 | 99860 | 158785 | 250320 | | | 65-0 | 360 | 670 | 1290 | 2100 | 3370 | 4730 | 7405 | 10510 | 17680 | 26040 | 40370 | 59245 | 106065 | 168655 | 265880 | | 150 | 125 | 275 | 515 | 990 | 1610 | 2585 | 3625 | 5680 | 8060 | 13555 | 19970 | 30960 | 45430 | 81340 | 129335 | 203898 | | | 100 | 370 | 695 | 1340 | 2185 | 3500 | 4915 | 7695 | 10920 | 18370 | 27055 | 41945 | 61555 | 110205 | 175235 | 27625 | | | 80-0 | 425 | 790 | 1520 | 2480 | 3970 | 5575 | 8730 | 12390 | 20840 | 30700 | 47595 | 69845 | 125045 | 198835 | 313460 | | 175 | 150 | 295 | 555 | 1065 | 1740 | 2785 | 3915 | 6130 | 8695 | 14625 | 21545 | 33405 | 49020 | 87765 | 139555 | 22000 | | | 125 | 405 | 755 | 1455 | 2370 | 3800 | 5335 | 8355 | 11860 | 19945 | 29375 | 45545 | 66835 | 119660 | 190270 | 299960 | | | 100
95-0 | 475
485 | 890
910 | 1715
1750 | 2790
2855 | 4475
4575 | 6285
6425 | 9835
10055 | 13960
14275 | 23480
24005 | 34585
35360 | 53625
54820 | 78690
80450 | 140880
144030 | 224015
229015 | 35315
36104 | | *** | 9 | | The second second | 9 | | 2 | | | | 2 | | | V | | 0.7000.00.00 | 2 | | 200 | 150 | 435 | 810 | 1560 | 2545 | 4080 | 5725 | 8965 | 12725 | 21405 | 31525 | 48880 | 71730 | 128420 | 204200 | 32192 | | | 125
110-0 | 515
550 | 960
1030 | 1850
1980 | 3015
3230 | 4825
5175 | 6780
7265 | 10615
11380 | 15065
16150 | 25335
27160 | 37320
40005 | 57860
62025 | 91020 | 152015
162960 | 241715
259120 | 381060
408500 | | 225 | 6 2000000 | 170/2000 | | 54/335Y | 256573001 | 1000000 | ARCHREAC | FREACHA | 5/00455635 | Second Second | Jest Bath | entresion. | CONTRACTOR OF THE PARTY | 100000000000000000000000000000000000000 | | Escentis | | 225 | 175 | 460 | 860 | 1660 | 2710 | 4340 | 6095 | 9540 | 13540 | 22770 | 33540 | 52000 | 76310 | 136620 | 217240 | 34247 | | | 150
125-0 | 550
615 | 1025
1145 | 1975
2210 | 3220
3600 | 5155
5765 | 7240
8100 | 11335
12680 | 16090
18000 | 27065
30270 | 39865
44585 | 61810
69130 | 90700 | 162380
181615 | 258200
288785 | 40705
45526 | | 250 | g Sources | 1303020 | States | 2000000 | DESIGNATION OF | 200000 | 3000000 | AL GOODS | 100000000000000000000000000000000000000 | | Production (| 307000000 | Describeration of the control | | 0.0000000000000000000000000000000000000 | Always | | 250 | 200 | 490 | 910 | 1755 | 2860 | 4585 | 6440 | 10080 | 14305 | 24060 | 35440 | 54945 | 80630 | 144355 | 229540 | 36186 | | | 175 | 580 | 1085 | 2095 | 3410 | 5465 | 7675 | 12020 | 170601 | 28690 | 42255 | 65515 | 96145 | 172130 | 273700 | 43148 | | | 150 | 655 | 1220 | 2350 | 3830 | 6135 | 8615
9020 | 13490 | 19145 | 32200 | 47435 | 73540 | 107920 | 193210 | 307225 | 48435 | | | 140-0 | 675 | 1265 | 2435 | 3970 | 6360 | 8930 | 13985 | 19845 | 33380 | 49165 | 76230 | 111860 | 200270 | 318445 | 50202 | Based on 10% (2 psi minimum) accuracy of regulation. # PRESSURE TEMPERATURE LIMITS Body Material and End Connection Selection BASED ON: ANSI B16.1-1989 (Cast Iron) B16.24-1991 (Cast Bronze) B16.5-1996 (All Steels) Enter selection table at the service temperature and read down the column. Obtain a figure for maximum allowable pressure which equals or exceeds the inlet pressure in the system. The materials are ranked in the order of their relative cost. It is wise in most cases to make several tentative selections for body material and end connection to determine which is most economical. For instance, it may be advantageous to go to a higher body rating than to select a stronger alloy. See product design limitations prior to final selection. Regular type (not bold) indicates recommended temperatures for each material. Bold type areas indicate temperatures permitted by ANSI B16.5-1996, but NOT recommended. #### Code Designations - = Class B Cast Iron - 6 = Grade WC1 (0.50% Moly) - 4 = Grade C5 (5.50% Chrome) 22 = Cast Bronze - 8 = Grade WC6 (1.25% Chrome) - 9 = Grade CF8 (304 SST) 3 = Grade WCB Carbon Steel 7 = Grade WC9 (2.25% Chrome) - 5 = Grade CF8M (316 SST) #### MAXIMUM PRESSURE (PSIG) AT SERVICE TEMPERATURE (°F) - (NON-SHOCK) | | | | | TEMPERATURE (°F) |--------------------------------------|---|--|---|------------------|---|------------|--|------------|--|-------|--|-----|--|--|--|--|--|--|--|--|---|-------------------------------------| | END
CONNECTIONS | BODY
MAT'L
CODE | ASTM
SPEC. | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 550 | 600 | 650 | 700 | 750 | 800 | 850 | 900 | 950 | 1000 | 1050 | | 125# FLANGES
THREADS
2"-12" | 2
22 | A126
B62 | 200
200 | 200
200 | 190
190 | 175
180 | 165
165 | 150
150 | 140
125 | 125 | | | | | | | | | | | 100 | | | 125# FLANGES
THREADS
14" - 24" | 2
22 | A126
B62 | 150
200 | 150
200 | 135
190 | 125
180 | 110
165 | 100
150 | 125 | | | | | | | | | | | | | | | 150# FLANGES
SWE, BWE
THREADS | 22
22
3
6
8
7
4
9 | B61
B62
A216
A217
A217
A217
A217
A351
A351 | 225
225
285
265
290
290
290
275
275 | 225
225 | 215
210
260
260
260
260
260
230
235 | 205
195 | 195
180
230
230
230
230
230
230
205
215 | 180
165 | 170
150
200
200
200
200
200
200
190
195 | 160 | 150
170
170
170
170
170
170
170 | 140 | 140
140
140
140
140
140
140 | 125
125
125
125
125
125
125
125 | 110
110
110
110
110
110
110 | 95
95
95
95
95
95
95 | 80
80
80
80
80
80 | 65
65
65
65
65
65
65 | 50
50
50
50
50
50
50 | 35
35
35
35
35
35
35
35 | 20
20
20
20
20
20
20
20
20 | | | 250# FLANGES
THREADS | 2
22 | A126
B62 | 500
400 | 500
400 | 460
385 | 415
365 | 375
335 | 335
300 | 290
250 | 250 | | | | | | | | 6 5 | | | | | | 300# FLANGES
SWE, BWE
THREADS | 22
22
3
6
8
7
4
9
5 | B61
B62
A216
A217
A217
A217
A217
A351
A351 | 500
500
740
695
750
750
750
720
720 | 500
500 | 475
465
675
680
750
750
745
600
620 | 450
425 | 425
390
655
655
720
730
715
540
560 | 400
350 | 375
315
635
640
695
705
705
495
515 | 350 | 325
600
620
665
665
665
465
480 | 300 | 550
605
605
605
605
435
450 | 535
590
590
590
590
430
445 | 535
570
570
570
570
425
430 | 505
530
530
530
530
530
415
425 | 410
510
510
510
510
405
420 | 270
485
485
485
485
395
420 | 170
450
450
450
370
390
415 | 105
280
320
375
275
380
385 | 50
165
215
260
200
329
350 | 145
175
145
305
345 | | 600# FLANGES
SWE, BWE
THREADS | 3
6
8
7
4
9 | A216
A217
A217
A217
A217
A351
A351 | 1480
1390
1500
1500
1500
1440
1440 | | 1350
1360
1500
1500
1490
1200
1240 | | 1315
1305
1445
1455
1430
1080
1120 | | 1270
1280
1385
1410
1410
995
1025 | | 1200
1245
1330
1330
1330
930
955 | | 1095
1210
1210
1210
1210
1210
875
900 | 1075
1175
1175
1175
1175
1175
860
890 | 1065
1135
1135
1135
1135
1135
850
870 | 1010
1065
1065
1065
1065
1055
830
855 | 825
1015
1015
1015
1015
1015
805
845 | 975
975
975
975
975
965
790
835 | 345
900
900
900
740
780
830 | 205
560
640
755
550
765
775 | 105
330
430
520
400
640
700 | 290
350
290
615
685 | | 900# FLANGES
SWE, BWE | 3
6
8
7
4
9 | A216
A217
A217
A217
A217
A351
A351 | 2220
2085
2250
2250
2250
2160
2160 | | 2025
2035
2250
2250
2235
1800
1860 | | 1970
1955
2165
2185
2150
1620
1680 | | 1900
1920
2080
2115
2115
1490
1540 | 7 | 1795
1865
1995
1995
1995
1395
1436 | | 1640
1815
1815
1815
1815
1310
1355 | 1610
1765
1765
1765
1765
1290
1330 | 1600
1705
1705
1705
1705
1705
1275
1305 | 1510
1595
1595
1595
1585
1245
1280 | 1235
1525
1525
1525
1525
1525
1210
1265 | 805
1460
1460
1460
1450
1190
1255 | 515
1350
1350
1350
1110
1165
1245 | 310
845
955
1130
825
1145
1160 | 155
495
650
780
595
965
1050 | 430
525
430
925
103 | | 1500# FLANGES
SWE, BWE | 3
6
8
7
4
9 | A216
A217
A217
A217
A217
A351
A351 | 3705
3470
3750
3750
3750
3600
3600 | | 3375
3395
3750
3750
3725
3000
3095 | | 3280
3260
3610
3640
3580
2700
2795 | | 3170
3200
3465
3530
3530
2485
2570 | 2 - 2 | 2995
3105
3325
3325
3325
2330
2390 | | 2735
3025
3025
3025
3025
2185
2255 | 2685
2940
2940
2940
2940
2150
2220 | 2665
2840
2840
2840
2840
2125
2170 | 2520
2660
2660
2660
2640
2075
2135 | 2060
2540
2540
2540
2540
2015
2110 | 1340
2435
2435
2435
2415
1980
2090 | 860
2245
2245
2245
1850
1945
2075 | 515
1405
1595
1885
1370
1910
1930 | 260
825
1080
1305
995
1605
1750 | 720
875
720
154
172 | | 2500# FLANGES
SWE, BWE | 3
6
8
7
4
9 | A216
A217
A217
A217
A217
A351
A351 | 6170
5785
6250
6250
6250
6000
6000 | | 5625
5660
6250
6250
6205
5000
5160 | | 5470
5435
6015
6070
5965
4500
4660 | | 5280
5330
5775
5880
5880
4140
4280 | | 4990
5180
5540
5540
5540
3880
3980 | | 4560
5040
5040
5040
5040
3640
3760 | 4475
4905
4905
4905
4905
3580
3700 | 4440
4730
4730
4730
4730
4730
3540
3620 | 4200
4430
4430
4430
4400
3460
3560 | 3430
4230
4230
4230
4230
4230
3360
3520 | 2230
4060
4060
4060
4030
3300
3480 | 1430
3745
3745
3745
3085
3240
3460 | 860
2345
2655
3145
2285
3180
3220 | 430
1370
1900
2170
1655
2675
2915 | 120
145
120
257
286 | | 3500# FLANGES
SWE, BWE | 3
6
8
7
4
9
5 | A216
A217
A217
A217
A217
A351
A351 | 8640
8100
8750
8750
8750
8400
8400 | | 7870
7920
8750
8750
8685
7000
7225 | | 7655
7605
8420
8495
8350
6300
6525 | | 7390
7460
8085
8230
8230
5795
5990 | 8 3 | 6985
7250
7750
7750
7750
5430
5570 | | 6385
7055
7055
7055
7055
5095
5265 | 6265
6865
6865
6865
6865
5010
5180 | 6215
6620
6620
6620
6620
4955
5065 | 5880
6200
6200
6200
6160
4845
4925 | 4800
5920
5920
5920
5920
4705
4845 | 3120
5680
5680
5680
5640
4620
4730 | 2000
5240
5240
5240
4320
4535
4590 | 1200
3280
3720
4405
3200
4450
4505 | 600
1920
2520
3040
2320
3745
4240 | 168
204
169
360
420 | | 4500# FLANGES
SWE, BWE | 3
6
8
7
4
9 | A216
A217
A217
A217
A217
A217
A351
A351 | 11110
10415
11250
11250
11250
10800
10800 | | 10120
10185
11250
11250
11170
9000
9290 | | 9845
9780
10830
10925
10740
8100
8390 | | 9505
9595
10400
10585
10585
7450
7705 | 3-2 | 8980
9320
9965
9965
9965
6985
7165 | | 8210
9070
9070
9070
9070
9070
6550
6770 | 9055
8825
8825
8825
8825
6445
6660 | 7990
8515
8515
8515
8515
8515
6370
6515 | 7560
7970
7970
7970
7920
6230
6410 | 6170
7610
7610
7610
7610
6050
6335 | 4010
7305
7305
7305
7250
5940
6265 | 2570
6740
6740
6740
5555
5830
6230 | 1545
4215
4785
5665
4115
5725
5795 | 770
2470
3240
3910
2985
4815
5245 | 216/
262
216/
463/
515/ | FOR 125# ANSI CAST IRON, PRESSURE LIMIT © 363°F. THE TEMPERATURE OF 125 PSIG SATURATED STEAM FOR 250# ANSI CAST IRON, PRESSURE LIMIT © 406°F. THE TEMPERATURE OF 250 PSIG SATURATED STEAM FOR 400# ANSI STEEL PRESSURE/TEMPERATURE LIMITS, SEE 5/0.3.3 - 5/79 - 3R NOTES: